PRIMARY STRUCTURE OF THE *Klebsiella* SEROTYPE-51 CAPSULAR POLYSACCHARIDE

AJIT K. CHAKRABORTY*,

Max Planck-Institut für Immunbiologie, D-7800 Freiburg (G.F.R.)

Ursula Dąbrowski,

Institut für Organische Chemie der Universität, D-6900 Heidelberg (G.F.R.)

HILDEGARD GEYER, RUDOLF GEYER, AND STEPHAN STIRM

Biochemisches Institut am Klinikum der Universität, D-6300 Giessen (G.F.R.)

(Received October 5th, 1981; accepted for publication, October 19th, 1981)

ABSTRACT

The *Klebsiella* serotype-51 (K51) capsular polysaccharide consists of a tetra-saccharide repeating-unit comprising a \rightarrow 3)- α -D-Galp-(1 \rightarrow 3)- α -D-Galp-(1 \rightarrow chain substituted by an α -D-GlcpA-(1 \rightarrow 6)- α -D-Glcp-(1 \rightarrow branch at position 4 of one galactosyl residue.

INTRODUCTION

Of the approximately eighty *Klebsiella* capsular polysaccharides of different K serotypes¹⁻³, more than fifty have been subjected to analyses of primary structure (e.g. refs. 3-7). We now report on the structure of the serotype-51 glycan.

MATERIAL AND METHODS

Bacteria. — Klebsiella 4715/50 (O3:K51), the serological test-strain for the Klebsiella K51 antigen, was kindly supplied by Dr. Ida Ørskov (WHO International Escherichia Center, Statens Seruminstitut, Copenhagen).

All materials and methods used have been described or cited previously⁸⁻¹⁰.

RESULTS

Klebsiella serotype-51 capsular glycan was isolated from Klebsiella 4715/50 (O3:K51). The sugar composition and some properties of the material are shown in Table I. The oligosaccharides obtained from the glycan by partial hydrolysis with

^{*}Present address: Department of Chemistry, Calcutta University Post Graduate Centre, Agartala, Tripura-799004, India.

TABLE I						
COMPOSITION A	ND SOME	PROPERTIES (of Klebsiella	SEROTYPE-51	CAPSULAR I	POLYSACCHARIDE

Polysaccharide	Weight percent of sugar residues (molar ratios)a				$\frac{s_{20}^c}{(10^{-13})}$	Equivalent weight ^a	$[\alpha]_{589}^{25e}$ (degrees)
	D-Glc	D-Gal	D-GlcA	Total ^b	sec)		
Native ^f	17.2 ^g (1.00)	38.1 ^h (2.22)	19.8 (1.06)	94.5 ^b	1) 3.6° 2) 6.1	645	+95
Alkali-treated ⁱ	18.5 (1.00)	39.2 (2.12)	20.2 (1.01)	n.d.	3.10	n.d.	+107
Carboxyl-reduced ^j	31.3^k (2.00)	38.6 (2.47)	6.5 (0.38)	n.d.	n.d.	n.d.	n.d.

^aHexoses determined by g.l.c. of the alditol acetates¹¹, and hexuronic acid by the carbazole-sulfuric acid method¹². ^bIncluding 16.3% of water (loss of weight after 24 h at 50° in vacuo over P₂O₅), 0.3% of protein (determined after hydrolysis with an amino acid analyser), 0.2% of nucleic acid (estimated from the absorption at 260 nm, using yeast RNA as a standard), and 2.6% of sodium (calculated on the basis of the glucuronic acid value). Paper electrophoresis or g.l.c., after hydrolysis 13, and ¹H-n.m.r. spectroscopy indicated the absence of pyruvate acetal and O-acetyl substituents. c0.4% Solutions (w/v) in phosphate-buffered, physiological saline were centrifuged; like other capsular polysaccharides from Enterobacteriaceae^{8,14}, the material did not sediment uniformly before mild treatment with alkali (see footnote i). dObtained by titration of the acidic form of the glycan⁹. In water (c 0.3). As extracted by the phenol-water-cetyltrimethylammonium bromide procedure^{8,14}; 100 14-cm nutrient-agar plates yielded 21.5 g of dry bacteria and, from these, 2.2 g (10.2%) of K51 polysaccharide. ^gAfter optimum hydrolysis (32 h, 100°, 0.5M H₂SO₄); about the same value was obtained with fungal D-glucose oxidase⁸. ^hAfter an optimum hydrolysis time of 6 h; about the same value was obtained with p-galactose dehydrogenase from Pseudomonas fluorescens8. For 4 h at 56° in 0.25M NaOH^{8,14}. Carboxyl-reduced by the method of Taylor et al. kAbout the same value was obtained with fungal D-glucose oxidase8.

acid are listed in Table II, and the results of methylation–g.l.c.–m.s. are given in Table III. Table IV summarises the ¹H-n.m.r. data and the structural deductions.

DISCUSSION

As evidenced by the sugar composition (Table I) and the ¹H-n.m.r. data (Table IV), the *Klebsiella* serotype-51 capsular glycan consists of tetrasaccharide repeating-units, comprising one D-glucuronic acid, one D-glucose, and two D-galactose residues; it is not substituted by pyruvate acetal or by *O*-acetyl groups (Table I).

The data presented in Tables II and IV demonstrate that the component sugars occur in the sequence $GlcA \rightarrow Glc \rightarrow Gal \rightarrow Gal \rightarrow GlcA \rightarrow Glc \rightarrow (Gal \rightarrow)Gal$, and that all anomeric configurations are α .

The results of methylation-g.l.c.-m.s. (Table III) show that GlcA is branch-terminal in the repeating unit of the polysaccharide (column 5), that it substitutes Glc at position 6 (column 1), and that one of the Gal residues is 3- and the other 3,4-di-substituted (branching point in the chain) (columns 4 and 5). From the

TABLE II

ACIDIC OLIGOSACCHARIDES OBTAINED FROM *Klebsiella* SEROTYPE-51 CAPSULAR POLYSACCHARIDE BY PARTIAL HYDROLYSIS WITH ACID

Determination	$A2^a$	<i>A3</i>	$A4^b$
Yield (%)	27	11	n.d.
Molar ratio of sugar components ^c			
D-Glucose	0.9	0.9	0.8
D-Galactose	_	1.0	1.8
D-Glucuronic acid	1.0	1.0	1.0
Reducing-end sugar ^d	Gle	Gal	Gal
Mobility in paper electrophoresis ^e (M_{GleA})	0.67	0.54	0.45
$R_{\rm Glc}$ in paper chromatography ^f	0.52	0.21	0.08
Enzymic hydrolysis by exo-glycosidases			
after reduction15 with carbodi-imide/NaBH4			
α-p-Glucosidase ^g	+	+	+
β -D-Glucosidase ^h	_	-	
α-D-Galactosidase ⁱ after α-D-glucosidase ^j	n.d.	n.d.	+
β -D-Galactosidase ^k after α -D-glucosidase ^j	n.d.	n.d.	<u>.</u>

^aA2, aldobiouronic acid; A3, aldotriouronic acid; etc. Obtained from the polysaccharide by preparative, paper electrophoresis (see footnote e) after 60 min at 100° in 0.5 M H₂SO₄ (or after 45 min at 98° in 2M trifluoroacetic acid). ^bA4 consists of a mixture of the two possible tetrasaccharides in the ratio ~1:3 (see Table III, column 3; Table IV; and Discussion). ^cHexoses determined by g.l.c. of the alditol acetates¹¹, and hexuronic acid by the carbazole–sulfuric acid method¹². ^dIdentified by g.l.c. as the alditol acetate, after reduction with NaBH₄, hydrolysis, and preparation of the acetylated aldononitriles from the other sugars¹⁶. ^eIn pyridine–acetic acid–water (10:4:86; pH 5.3). ^fDescending p.c. with ethyl acetate–acetic acid–formic acid–water (18:3:1:4). ^gα-D-Glucosidase from yeast, using maltose and cellobiose as controls, and estimating the D-glucose liberated with fungal D-glucose oxidase⁸. ^hβ-D-Glucosidase from sweet almonds, with the same controls and detection. ^tα-D-Galactosidase from green coffee-beans, using melibiose and lactose as controls, and determining the D-galactose liberated with D-galactose dehydrogenase from Ps. fluorescens⁸. ^fThe tetrasaccharides were incubated for 24 h with a large excess of α-D-glucosidase, and the resulting disaccharide fraction was isolated by chromatography on Biogel P2 and then treated with the galactosidase. ^kβ-D-Galactosidase from Escherichia coli⁸ with the same controls and detection as in footnote i.

methylation analysis of the aldotriouronic acid (column 2) [i.e., from its structure $GlcpA-(1\rightarrow 6)-Glcp-(1\rightarrow 4)-Gal]$, it can be deduced that the branch in the repeating unit consists of α -D- $GlcpA-(1\rightarrow 6)-\alpha$ -D- $Glcp-(1\rightarrow$, and that the chain comprises two $\rightarrow 3$)- α -D- $Galp-(1\rightarrow$ residues, one of which is substituted by the branch at position 4 (see Table IV for a summary). These structural conclusions are confirmed by the methylation results obtained with the mixture of tetraouronic acids, also isolated on partial hydrolysis of the glycan with acid (Table II; Table III, column 3; Table IV, footnote b).

TABLE III
IDENTIFICATION a and ratios of O -acetyl- O -methylalditols obtained from $Klebsiella$ serotype-51
CAPSULAR POLYSACCHARIDE AND ITS DERIVATIVES

Per-O-acetyl derivative of ^b	10	2	3	4	5	
	Ratio of peak integrals ^d					
2,3,4,6-GlcOHe			_		0.8e	
2,3,4,6-GalOH	_	_	1.0		_	
2,4,6-GalOH			0.4	1.0	1.0	
2,3,6-GalOH	_	1.2	0.4	_		
2,3,4-GlcOH	1.0	1.0	1.1	1.0	1.1	
2,6-GalOH			1.3	1.1	1.1	

^aBy combined gas chromatography-mass spectrometry employing columns packed with ECNSS- $M^{17,18}$, and capillary columns wall-coated with Silar 9CP or OV- 101^{10} . ^b2,3,4,6-GlcOH = 2,3,4,6-tetra-O-methyl-p-glucitol, etc. ^c1, aldobiouronic acid A2 (see Table II), permethylated; 2, aldotriouronic acid A3, permethylated; 3, mixture of the two possible tetraouronic acids (ratio $\sim 1:3$; see Table IV, footnote b, and Discussion), permethylated; 4, K51 polysaccharide, permethylated; 5, K51 polysaccharide, permethylated, carboxyl-reduced/dideuterated with calcium borodeuteride¹⁹, and remethylated. ^aDetection by flame ionisation. ^eDideuterated at position 6.

TABLE IV 1 H-n.m.r. signals of anomeric protons in *Klebsiella* serotype-51 oligosaccharides and capsular polysaccharide a , and summary of structures

Oligo- or poly-saccharide	δ	J (Hz)	Approximate ratio of integrals	e Proton assignment
Aldobiouronic acid A2	5.20	~3	0.5	6)-α-Glc
α -D-Glc p A-(1 \rightarrow 6)-D-Glc	4.90	~3	1.0	α-GlcpA
• • •	4.63	7.5	0.5	6)-β-Glc
Aldotriouronic acid A3	5.29	3.0	0.5	4)-α-Gal
α -D-GlcpA-(1 \rightarrow 6)- α -D-Glcp-(1 \rightarrow 4)-D-Gal	4.96 4.96	$\begin{array}{l} \sim 2.5 \\ \sim 2.5 \end{array}$	2.0	$\begin{cases} 6)-\alpha\text{-Glc}p\\ \alpha\text{-Glc}pA \end{cases}$
	4.63	7.0	0.5	4)- β -Gal
Polysaccharide	5.35	∼ 3	1.0 }	∫ 3)-α-Gal <i>p</i>
α -D-Glc p A	5.20	~ 3	1.0 ∫	$3,4$)- α -Gal p
1	5.08	~ 3	1.0	6)-α-Glcp
6	4.98	~3	1.0	α -Glc p A
α -D-Glc p				
1 ↓ 4				
\rightarrow 3)- α -D-Gal p -(1 \rightarrow 3)- α -D-Gal p -(1 \rightarrow				
\uparrow^b $(\uparrow)^b$				

^aSolutions (0.5-3.0%, w/v) in deuterium oxide were run at 70° and 90 MHz^9 . ^bFormation of tetraouronic acids during partial, acid hydrolysis; preferential and minority cleavage-site (see Table III, column 3, and Discussion).

ACKNOWLEDGMENTS

We thank Mrs. Hannelore Thoma (isolation of polysaccharide), Miss Helga Kochanowski (analytical ultracentrifugation), Mr. Werner Mink (g.l.c.), and Mr. Siegfried Kühnhardt (g.l.c.-m.s.) for technical assistance. This project was supported by Fonds der Chemischen Industrie and by Deutsche Forschungsgemeinschaft.

REFERENCES

- 1 I. Ørskov and M. A. Fife-Asbury, Int. J. Syst. Bacteriol., 27 (1977) 386-387.
- 2 B. LINDBERG AND W. NIMMICH, Carbohydr. Res., 48 (1976) 81-84.
- 3 W. NIMMICH, Z. Allg. Mikrobiol., 15 (1975) 127-129.
- 4 J. DI FABIO AND G. G. S. DUTTON, Carbohydr. Res., 92 (1981) 287-298.
- 5 B. Lindberg, F. Lindh, J. Lönngren, and W. Nimmich, Carbohydr. Res., 70 (1979) 135-144.
- 6 S. C. Churms, E. H. Merrifield, and A. M. Stephen, Carbohydr. Res., 81 (1980) 49-58.
- 7 U. Elsässer-Beile, H. Friebolin, and S. Stirm, Carbohydr. Res., 65 (1978) 245-249.
- 8 H. Thurow, Y.-M. Choy, N. Frank, H. Niemann, and S. Stirm, *Carbohydr. Res.*, 41 (1975) 241–255.
- 9 H. NIEMANN, N. FRANK, AND S. STIRM, Carbohydr. Res., 59 (1977) 165-177.
- 10 R. GEYER, H. GEYER, S. KÜHNHARDT, W. MINK, AND S. STIRM, Anal. Biochem., in press.
- 11 J. S. SAWARDEKER, J. H. SLONEKER, AND A. JEANES, Anal. Chem., 12 (1965) 1602-1604.
- 12 Z. DISCHE, Methods Carbohydr. Chem., 1 (1962) 497-501.
- 13 I. FROMME AND H. BEILHARZ, Anal. Biochem., 84 (1978) 347-353.
- 14 K. Jann, B. Jann, F. Ørskov, I. Ørskov, and O. Westphal, Biochem. Z., 342 (1965) 1-22.
- 15 R. L. TAYLOR, J. E. SHIVELY, AND H. E. CONRAD, Methods Carbohydr. Chem., 7 (1976) 149-151.
- 16 I. M. MORRISON, J. Chromatogr., 108 (1975) 361-364.
- 17 H. BJÖRNDAL, C. G. HELLERQVIST, B. LINDBERG, AND S. SVENSSON, Angew. Chem., 82 (1970) 643–647.
- 18 P.-E. Jansson, L. Kenne, H. Liedgren, B. Lindberg, and J. Lönngren, *Chem. Commun.*, *Univ. Stockholm*, 8 (1976) 1–75.
- 19 J. KOLLONITSCH, O. FUCHS, AND V. GÁBOR, Nature (London), 175 (1955) 346.